Adjoint equation: Difference between revisions

From Glossary of Meteorology
(Created page with " {{TermHeader}} {{TermSearch}} <div class="termentry"> <div class="term"> == adjoint equation == </div> <div class="definition"><div class="short_definition">An equatio...")
m (Rewrite with Template:Term and clean up)
 
Line 1: Line 1:
 
{{Term
 
|Display title=adjoint equation
{{TermHeader}}
|Definitions={{Definition
{{TermSearch}}
|Num=1
 
|Meaning=An equation of the form '''x'''<sub>0</sub> = &#x1D5DF;<sup>''T''</sup>'''x'''<sub>1</sub>, in which the [[linear operator]] &#x1D5DF;<sup>''T''</sup> is the adjoint  of the matrix [[operator]] &#x1D5DF; that satisfies (&#x1D5DF;<sup>''T''</sup>'''x'''<sub>1</sub>,'''x'''<sub>0</sub>) = ('''x'''<sub>1</sub>,&#x1D5DF;'''x'''<sub>0</sub>), where '''x'''<sub>0</sub> and '''x'''<sub>1</sub> are vectors and (,)  represents an [[inner product]].
<div class="termentry">
|Explanation=If (,) is the standard dot product (Euclidean inner product) then &#x1D5DF;<sup>''T''</sup> is simply the transpose of  &#x1D5DF;. <br/>''See'' [[adjoint sensitivity]], [[adjoint model]], [[tangent linear equation]].
  <div class="term">
}}
== adjoint equation ==
}}
  </div>
 
<div class="definition"><div class="short_definition">An equation of the form '''x'''<sub>0</sub> = &#x1D5DF;<sup>''T''</sup>'''x'''<sub>1</sub>, in which the [[linear operator]] &#x1D5DF;<sup>''T''</sup> is the adjoint  of the matrix [[operator]] &#x1D5DF; that satisfies (&#x1D5DF;<sup>''T''</sup>'''x'''<sub>1</sub>,'''x'''<sub>0</sub>) = ('''x'''<sub>1</sub>,&#x1D5DF;'''x'''<sub>0</sub>), where '''x'''<sub>0</sub> and '''x'''<sub>1</sub> are vectors and (,)  represents an [[inner product]].</div><br/> <div class="paragraph">If (,) is the standard dot product (Euclidean inner product) then &#x1D5DF;<sup>''T''</sup> is simply the transpose of  &#x1D5DF;. <br/>''See'' [[adjoint sensitivity]], [[adjoint model]], [[tangent linear equation]].</div><br/> </div>
</div>
 
{{TermIndex}}
{{TermFooter}}
 
[[Category:Terms_A]]

Latest revision as of 21:17, 27 March 2024

An equation of the form x0 = 𝗟Tx1, in which the linear operator 𝗟T is the adjoint of the matrix operator 𝗟 that satisfies (𝗟Tx1,x0) = (x1,𝗟x0), where x0 and x1 are vectors and (,) represents an inner product.

If (,) is the standard dot product (Euclidean inner product) then 𝗟T is simply the transpose of 𝗟.
See adjoint sensitivity, adjoint model, tangent linear equation.

Copyright 2024 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S.Copyright Act (17 USC § 108) does not require AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, require written permission or a license from AMS. Additional details are provided in the AMS Copyright Policy statement.