Spherical coordinates: Difference between revisions

From Glossary of Meteorology
No edit summary
m (Rewrite with Template:Term and clean up)
 
Line 1: Line 1:
 
{{Term
 
|Display title=spherical coordinates
{{TermHeader}}
|Definitions={{Definition
{{TermSearch}}
|Num=1
 
|Meaning=(''Also called'' polar coordinates in space, geographical coordinates.) A system  of [[curvilinear coordinates]] in which the position of a point in space is designated by its distance  ''r'' from the origin or pole along the [[radius vector]], the angle φ between the radius vector and a  vertically directed [[polar axis]] called the [[cone angle]] or colatitude, and the angle θ between the  plane of φ and a fixed [[meridian]] plane through the polar axis, called the [[polar angle]] or longitude.
<div class="termentry">
|Explanation=A constant-amplitude radius vector '''r''' confines a point to a sphere of radius ''r'' about the pole.  The angles &#x003c6; and &#x003b8; serve to determine the position of the point on the sphere. The relations  between the spherical coordinates and the [[rectangular Cartesian coordinates]] (''x'', ''y'', ''z'') are ''x'' =  ''r'' cos &#x003b8; sin &#x003c6;; ''y'' = ''r'' sin &#x003b8; sin &#x003c6;; ''z'' = ''r'' cos &#x003c6;.
  <div class="term">
}}
== spherical coordinates ==
}}
  </div>
 
<div class="definition"><div class="short_definition">(''Also called'' polar coordinates in space, geographical coordinates.) A system  of [[curvilinear coordinates]] in which the position of a point in space is designated by its distance  ''r'' from the origin or pole along the [[radius vector]], the angle &#x003c6; between the radius vector and a  vertically directed [[polar axis]] called the [[cone angle]] or colatitude, and the angle &#x003b8; between the  plane of &#x003c6; and a fixed [[meridian]] plane through the polar axis, called the [[polar angle]] or longitude.</div><br/> <div class="paragraph">A constant-amplitude radius vector '''r''' confines a point to a sphere of radius ''r'' about the pole.  The angles &#x003c6; and &#x003b8; serve to determine the position of the point on the sphere. The relations  between the spherical coordinates and the [[rectangular Cartesian coordinates]] (''x'', ''y'', ''z'') are ''x'' =  ''r'' cos &#x003b8; sin &#x003c6;; ''y'' = ''r'' sin &#x003b8; sin &#x003c6;; ''z'' = ''r'' cos &#x003c6;.</div><br/> </div>
</div>
 
{{TermIndex}}
{{TermFooter}}
 
[[Category:Terms_S]]

Latest revision as of 06:46, 30 March 2024

(Also called polar coordinates in space, geographical coordinates.) A system of curvilinear coordinates in which the position of a point in space is designated by its distance r from the origin or pole along the radius vector, the angle φ between the radius vector and a vertically directed polar axis called the cone angle or colatitude, and the angle θ between the plane of φ and a fixed meridian plane through the polar axis, called the polar angle or longitude.

A constant-amplitude radius vector r confines a point to a sphere of radius r about the pole. The angles φ and θ serve to determine the position of the point on the sphere. The relations between the spherical coordinates and the rectangular Cartesian coordinates (x, y, z) are x = r cos θ sin φ; y = r sin θ sin φ; z = r cos φ.

Copyright 2025 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S.Copyright Act (17 USC § 108) does not require AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, require written permission or a license from AMS. Additional details are provided in the AMS Copyright Policy statement.