virtual potential temperature

From Glossary of Meteorology


The theoretical potential temperature of dry air that would have the same density as moist air.
It is used as a convenient surrogate for density in buoyancy calculations. The virtual potential temperature θv is defined by

ams2001glos-Ve14

where θ is the actual potential temperature, r is the mixing ratio of water vapor, and rL is the mixing ratio of liquid water in the air. Temperatures must be in units of Kelvin, and mixing ratios in units of gwater/gdry air. Because water vapor is less dense than dry air, humid air has a warmer θv than dry air. Liquid water droplets, if falling at their terminal velocity in air, make the air heavier and are associated with colder θv. For saturated or cloudy air, use saturation mixing ratio in place of r, while for unsaturated air, use rL = 0.
See virtual temperature.


temperatura potencial virtual[edit | edit source]

Es la temperatura potencial teórica del aire seco que tendría la misma densidad que el aire húmedo.

Se utiliza como un sustituto conveniente para la densidad en los cálculos de empuje hidrostático. La temperatura potencial virtual θv se define por

ams2001glos-Ve14

donde θ es la temperatura potencial real, r es la proporción de mezcla del vapor de agua y rL es la proporción de mezcla del agua líquida en el aire. Las temperaturas deben estar en unidades de Kelvin, y las proporciones de mezcla en unidades de gagua/gaire seco. Debido a que el vapor de agua es menos denso que el aire seco, el aire húmedo tiene una θv más cálida que el aire seco. Las gotas de agua líquida, si caen a su velocidad terminal en el aire, hacen que el aire sea más pesado y están asociadas con θv más frías. Para aire saturado o nublado, use la proporción de mezcla de saturación en lugar de r, mientras que para aire insaturado, use rL = 0.
Consulte temperatura virtual.

Copyright 2024 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S.Copyright Act (17 USC § 108) does not require AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, require written permission or a license from AMS. Additional details are provided in the AMS Copyright Policy statement.